Fate of citalopram during water treatment with O3, ClO2, UV and Fenton oxidation.

نویسندگان

  • Maritha Hörsing
  • Tina Kosjek
  • Henrik R Andersen
  • Ester Heath
  • Anna Ledin
چکیده

In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O(3), ClO(2) oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO(2) removed>90% CIT at a dosage of 0.1 mg L(-1). During UV irradiation 85% reduction was achieved after 5 min, while Fenton with addition of 14 mg L(-1) (Fe(2+)) resulted in 90% reduction of CIT. During these treatment experiments transformation products (TPs) were formed from CIT, where five compounds were identified by using high resolution and tandem mass spectrometry. Among these desmethyl-citalopram and citalopram N-oxide have been previously identified as human metabolites, while three are novel and published here for the first time. The three TPs are a hydroxylated dimethylamino-side chain derivative, a butyrolactone derivative and a defluorinated derivative of CIT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced oxidation processes against alkyl phenols in groundwater samples

Spectrophotometric examinations showed the presence of phenolic compounds in the organic residue collected from four groundwater resources located in vicinity of an oil refinery at the outskirt of Tehran. The average concentration of total phenolic compounds was about 0.38 mg.L-1 in these samples using Folin-Ciocalteu method. GC-Mass analysis disclosed that alkylphenols were the major phenolic ...

متن کامل

Removal of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments

Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photoFenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water ta...

متن کامل

Effect of oxidation on amine-based pharmaceutical degradation and N-Nitrosodimethylamine formation.

Four pharmaceuticals (ranitidine, nizatidine, doxylamine, and carbinoxamine) were selected as model compounds to assess the efficiency of four oxidants (ozone (O3), chlorine (Cl2), chlorine dioxide (ClO2) and potassium permanganate (KMnO4)) on the removal of amine-based pharmaceutical and personal care products (PPCPs), as well as the reduction of their N-Nitrosodimethylamine formation potentia...

متن کامل

A Comparison Study of the Removal of Selected Pharmaceuticals in Waters by Chemical Oxidation Treatments

The degradation of selected pharmaceuticals in some water matrices was studied by using several chemical treatments. The pharmaceuticals selected were the beta-blocker metoprolol, the nonsteroidal anti-inflammatory naproxen, the antibiotic amoxicillin, and the analgesic phenacetin; and their degradations were conducted by using UV radiation alone, ozone, Fenton’s reagent, Fenton-like system, ph...

متن کامل

Effect of oxidation on nitro-based pharmaceutical degradation and trichloronitromethane formation.

Nitro-based compounds are the direct precursors of trichloronitromethane during chlorination disinfection. Two nitro-based pharmaceuticals ranitidine and nizatidine were selected as model compounds to assess the effect of oxidation on the removal of nitro-based pharmaceuticals, as well as the reduction of their trichloronitromethane formation potentials (TCNMFPs). The four oxidants were ozone (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2012